Apache Spark Linear Regression Example
Linear Regression Example using Apache Spark
Example code
import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.ml.regression.LinearRegression import org.apache.spark.sql.SparkSession object LinearRegressionExample { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .appName("Linear Regression Example") .getOrCreate() val loadOptions = Map("sep" -> "\t", "header" -> "true", "mode" -> "FAILFAST", "inferSchema" -> "true") val dataPath = "mtcars.tsv" val mtcars = spark.read.options(loadOptions).csv(dataPath) val assembler = new VectorAssembler() .setInputCols(Array("wt", "cyl")) .setOutputCol("features") val output = assembler.transform(mtcars) val extractedData = output.select("features", "mpg") val linearRegression = new LinearRegression() .setFeaturesCol("features") .setLabelCol("mpg") val model = linearRegression.fit(extractedData) println(s"Weights: ${model.coefficients} Intercept: ${model.intercept}") spark.close() } }
scikit-learn이나 R과 비교하면 복잡하긴하다...
Todo: PipeLine() 사용한 코드로 수정할 것.
반응형
댓글
이 글 공유하기
다른 글
-
pip show / pip로 설치한 package 정보 확인
pip show / pip로 설치한 package 정보 확인
2016.05.06 -
Ubuntu man pages
Ubuntu man pages
2016.04.04 -
ERROR: configuration failed for package 'RCurl'
ERROR: configuration failed for package 'RCurl'
2015.12.28 -
Python urllib.request / json 예제
Python urllib.request / json 예제
2015.10.29
댓글을 사용할 수 없습니다.